Papers
Topics
Authors
Recent
2000 character limit reached

Improving Weak-to-Strong Generalization with Reliability-Aware Alignment (2406.19032v1)

Published 27 Jun 2024 in cs.CL

Abstract: LLMs are now rapidly advancing and surpassing human abilities on many natural language tasks. However, aligning these super-human LLMs with human knowledge remains challenging because the supervision signals from human annotators may be wrong. This issue, known as the "super-alignment" problem, requires enhancing weak-to-strong generalization, where a strong LLM must generalize from imperfect supervision provided by a weaker source. To address this issue, we propose an approach to improve weak-to-strong generalization by involving the reliability of weak supervision signals in the alignment process. In our method, we query the weak supervisor for multiple answers, estimate the answer reliability, and enhance the alignment process by filtering out uncertain data or re-weighting reliable data. Experiments on four datasets demonstrate that our methods effectively identify the quality of weak labels and significantly enhance weak-to-strong generalization. Our work presents effective techniques for error-robust model alignment, reducing error propagation from noisy supervision and enhancing the accuracy and reliability of LLMs. Codes are publicly available at http://github.com/Irenehere/ReliableAlignment.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.