Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exact results on traces of sets (2406.18870v1)

Published 27 Jun 2024 in math.CO

Abstract: For non-negative integers $n$, $m$, $a$ and $b$, we write $\left( n,m \right) \rightarrow \left( a,b \right)$ if for every family $\mathcal{F}\subseteq 2{[n]}$ with $|\mathcal{F}|\geqslant m$ there is an $a$-element set $T\subseteq [n]$ such that $\left| \mathcal{F}{\mid T} \right| \geqslant b$, where $\mathcal{F}{\mid T}={ F \cap T : F \in \mathcal{F} }$. A longstanding problem in extremal set theory asks to determine $m(s)=\lim_{n\rightarrow +\infty}\frac{m(n,s)}{n}$, where $m(n,s)$ denotes the maximum integer $m$ such that $\left( n,m \right) \rightarrow \left( n-1,m-s \right)$ holds for non-negatives $n$ and $s$. In this paper, we establish the exact value of $m(2{d-1}-c)$ for all $1\leqslant c\leqslant d$ whenever $d\geqslant 50$, thereby solving an open problem posed by Piga and Sch\"{u}lke. To be precise, we show that $$m(n,2{d-1}-c)=\frac{2{d}-c}{d}n \mbox{ for } 1\leq c\leq d-1 \mbox{ and } d\mid n, \mbox{ and } m(n,2{d-1}-d)=\frac{2{d}-d-0.5}{d}n \mbox{ for } 2d\mid n $$ holds for $d\geq 50$. Furthermore, we provide a proof that confirms a conjecture of Frankl and Watanabe from 1994, demonstrating that $m(11)=5.3$.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com