Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Density Ratio Estimation via Sampling along Generalized Geodesics on Statistical Manifolds (2406.18806v1)

Published 27 Jun 2024 in stat.ML and cs.LG

Abstract: The density ratio of two probability distributions is one of the fundamental tools in mathematical and computational statistics and machine learning, and it has a variety of known applications. Therefore, density ratio estimation from finite samples is a very important task, but it is known to be unstable when the distributions are distant from each other. One approach to address this problem is density ratio estimation using incremental mixtures of the two distributions. We geometrically reinterpret existing methods for density ratio estimation based on incremental mixtures. We show that these methods can be regarded as iterating on the Riemannian manifold along a particular curve between the two probability distributions. Making use of the geometry of the manifold, we propose to consider incremental density ratio estimation along generalized geodesics on this manifold. To achieve such a method requires Monte Carlo sampling along geodesics via transformations of the two distributions. We show how to implement an iterative algorithm to sample along these geodesics and show how changing the distances along the geodesic affect the variance and accuracy of the estimation of the density ratio. Our experiments demonstrate that the proposed approach outperforms the existing approaches using incremental mixtures that do not take the geometry of the

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Masanari Kimura (30 papers)
  2. Howard Bondell (20 papers)

Summary

We haven't generated a summary for this paper yet.