Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Lifelong Robot Library Learning: Bootstrapping Composable and Generalizable Skills for Embodied Control with Language Models (2406.18746v2)

Published 26 Jun 2024 in cs.RO

Abstract: LLMs have emerged as a new paradigm for embodied reasoning and control, most recently by generating robot policy code that utilizes a custom library of vision and control primitive skills. However, prior arts fix their skills library and steer the LLM with carefully hand-crafted prompt engineering, limiting the agent to a stationary range of addressable tasks. In this work, we introduce LRLL, an LLM-based lifelong learning agent that continuously grows the robot skill library to tackle manipulation tasks of ever-growing complexity. LRLL achieves this with four novel contributions: 1) a soft memory module that allows dynamic storage and retrieval of past experiences to serve as context, 2) a self-guided exploration policy that proposes new tasks in simulation, 3) a skill abstractor that distills recent experiences into new library skills, and 4) a lifelong learning algorithm for enabling human users to bootstrap new skills with minimal online interaction. LRLL continuously transfers knowledge from the memory to the library, building composable, general and interpretable policies, while bypassing gradient-based optimization, thus relieving the learner from catastrophic forgetting. Empirical evaluation in a simulated tabletop environment shows that LRLL outperforms end-to-end and vanilla LLM approaches in the lifelong setup while learning skills that are transferable to the real world. Project material will become available at the webpage https://gtziafas.github.io/LRLL_project.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com