Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Sum-of-Squares Lower Bounds for Independent Set in Ultra-Sparse Random Graphs (2406.18429v1)

Published 26 Jun 2024 in cs.DS

Abstract: We prove that for every $D \in \N$, and large enough constant $d \in \N$, with high probability over the choice of $G \sim G(n,d/n)$, the \Erdos-\Renyi random graph distribution, the canonical degree $2D$ Sum-of-Squares relaxation fails to certify that the largest independent set in $G$ is of size $o(\frac{n}{\sqrt{d} D4})$. In particular, degree $D$ sum-of-squares strengthening can reduce the integrality gap of the classical \Lovasz theta SDP relaxation by at most a $O(D4)$ factor. This is the first lower bound for $>4$-degree Sum-of-Squares (SoS) relaxation for any problems on \emph{ultra sparse} random graphs (i.e. average degree of an absolute constant). Such ultra-sparse graphs were a known barrier for previous methods and explicitly identified as a major open direction (e.g.,~\cite{deshpande2019threshold, kothari2021stressfree}). Indeed, the only other example of an SoS lower bound on ultra-sparse random graphs was a degree-4 lower bound for Max-Cut. Our main technical result is a new method to obtain spectral norm estimates on graph matrices (a class of low-degree matrix-valued polynomials in $G(n,d/n)$) that are accurate to within an absolute constant factor. All prior works lose $\poly log n$ factors that trivialize any lower bound on $o(\log n)$-degree random graphs. We combine these new bounds with several upgrades on the machinery for analyzing lower-bound witnesses constructed by pseudo-calibration so that our analysis does not lose any $\omega(1)$-factors that would trivialize our results. In addition to other SoS lower bounds, we believe that our methods for establishing spectral norm estimates on graph matrices will be useful in the analyses of numerical algorithms on average-case inputs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube