Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Automated Immunophenotyping Assessment for Diagnosing Childhood Acute Leukemia using Set-Transformers (2406.18309v1)

Published 26 Jun 2024 in cs.LG and q-bio.QM

Abstract: Acute Leukemia is the most common hematologic malignancy in children and adolescents. A key methodology in the diagnostic evaluation of this malignancy is immunophenotyping based on Multiparameter Flow Cytometry (FCM). However, this approach is manual, and thus time-consuming and subjective. To alleviate this situation, we propose in this paper the FCM-Former, a machine learning, self-attention based FCM-diagnostic tool, automating the immunophenotyping assessment in Childhood Acute Leukemia. The FCM-Former is trained in a supervised manner, by directly using flow cytometric data. Our FCM-Former achieves an accuracy of 96.5% assigning lineage to each sample among 960 cases of either acute B-cell, T-cell lymphoblastic, and acute myeloid leukemia (B-ALL, T-ALL, AML). To the best of our knowledge, the FCM-Former is the first work that automates the immunophenotyping assessment with FCM data in diagnosing pediatric Acute Leukemia.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.