Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
104 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Robustness of LLM-based Speech Synthesis by Learning Monotonic Alignment (2406.17957v1)

Published 25 Jun 2024 in cs.SD, cs.AI, and eess.AS

Abstract: LLM based text-to-speech (TTS) systems have demonstrated remarkable capabilities in handling large speech datasets and generating natural speech for new speakers. However, LLM-based TTS models are not robust as the generated output can contain repeating words, missing words and mis-aligned speech (referred to as hallucinations or attention errors), especially when the text contains multiple occurrences of the same token. We examine these challenges in an encoder-decoder transformer model and find that certain cross-attention heads in such models implicitly learn the text and speech alignment when trained for predicting speech tokens for a given text. To make the alignment more robust, we propose techniques utilizing CTC loss and attention priors that encourage monotonic cross-attention over the text tokens. Our guided attention training technique does not introduce any new learnable parameters and significantly improves robustness of LLM-based TTS models.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com