Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Asymptotically Minimax Regret by Bayes Mixtures (2406.17929v1)

Published 25 Jun 2024 in cs.IT and math.IT

Abstract: We study the problems of data compression, gambling and prediction of a sequence $xn=x_1x_2...x_n$ from an alphabet ${\cal X}$, in terms of regret and expected regret (redundancy) with respect to various smooth families of probability distributions. We evaluate the regret of Bayes mixture distributions compared to maximum likelihood, under the condition that the maximum likelihood estimate is in the interior of the parameter space. For general exponential families (including the non-i.i.d.\ case) the asymptotically mimimax value is achieved when variants of the prior of Jeffreys are used. %under the condition that the maximum likelihood estimate is in the interior of the parameter space. Interestingly, we also obtain a modification of Jeffreys prior which has measure outside the given family of densities, to achieve minimax regret with respect to non-exponential type families. This modification enlarges the family using local exponential tilting (a fiber bundle). Our conditions are confirmed for certain non-exponential families, including curved families and mixture families (where either the mixture components or their weights of combination are parameterized) as well as contamination models. Furthermore for mixture families we show how to deal with the full simplex of parameters. These results also provide characterization of Rissanen's stochastic complexity.

Citations (46)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.