Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Semi-supervised classification of dental conditions in panoramic radiographs using large language model and instance segmentation: A real-world dataset evaluation (2406.17915v1)

Published 25 Jun 2024 in cs.CV and cs.AI

Abstract: Dental panoramic radiographs offer vast diagnostic opportunities, but training supervised deep learning networks for automatic analysis of those radiology images is hampered by a shortage of labeled data. Here, a different perspective on this problem is introduced. A semi-supervised learning framework is proposed to classify thirteen dental conditions on panoramic radiographs, with a particular emphasis on teeth. LLMs were explored to annotate the most common dental conditions based on dental reports. Additionally, a masked autoencoder was employed to pre-train the classification neural network, and a Vision Transformer was used to leverage the unlabeled data. The analyses were validated using two of the most extensive datasets in the literature, comprising 8,795 panoramic radiographs and 8,029 paired reports and images. Encouragingly, the results consistently met or surpassed the baseline metrics for the Matthews correlation coefficient. A comparison of the proposed solution with human practitioners, supported by statistical analysis, highlighted its effectiveness and performance limitations; based on the degree of agreement among specialists, the solution demonstrated an accuracy level comparable to that of a junior specialist.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube