Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Treatment of Statistical Estimation Problems in Randomized Smoothing for Adversarial Robustness (2406.17830v2)

Published 25 Jun 2024 in stat.ML and cs.LG

Abstract: Randomized smoothing is a popular certified defense against adversarial attacks. In its essence, we need to solve a problem of statistical estimation which is usually very time-consuming since we need to perform numerous (usually $105$) forward passes of the classifier for every point to be certified. In this paper, we review the statistical estimation problems for randomized smoothing to find out if the computational burden is necessary. In particular, we consider the (standard) task of adversarial robustness where we need to decide if a point is robust at a certain radius or not using as few samples as possible while maintaining statistical guarantees. We present estimation procedures employing confidence sequences enjoying the same statistical guarantees as the standard methods, with the optimal sample complexities for the estimation task and empirically demonstrate their good performance. Additionally, we provide a randomized version of Clopper-Pearson confidence intervals resulting in strictly stronger certificates.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com