Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Knowledge Distillation in Automated Annotation: Supervised Text Classification with LLM-Generated Training Labels (2406.17633v1)

Published 25 Jun 2024 in cs.CL and cs.LG

Abstract: Computational social science (CSS) practitioners often rely on human-labeled data to fine-tune supervised text classifiers. We assess the potential for researchers to augment or replace human-generated training data with surrogate training labels from generative LLMs. We introduce a recommended workflow and test this LLM application by replicating 14 classification tasks and measuring performance. We employ a novel corpus of English-language text classification data sets from recent CSS articles in high-impact journals. Because these data sets are stored in password-protected archives, our analyses are less prone to issues of contamination. For each task, we compare supervised classifiers fine-tuned using GPT-4 labels against classifiers fine-tuned with human annotations and against labels from GPT-4 and Mistral-7B with few-shot in-context learning. Our findings indicate that supervised classification models fine-tuned on LLM-generated labels perform comparably to models fine-tuned with labels from human annotators. Fine-tuning models using LLM-generated labels can be a fast, efficient and cost-effective method of building supervised text classifiers.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube