Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Video Inpainting Localization with Contrastive Learning (2406.17628v1)

Published 25 Jun 2024 in cs.CV and cs.CR

Abstract: Deep video inpainting is typically used as malicious manipulation to remove important objects for creating fake videos. It is significant to identify the inpainted regions blindly. This letter proposes a simple yet effective forensic scheme for Video Inpainting LOcalization with ContrAstive Learning (ViLocal). Specifically, a 3D Uniformer encoder is applied to the video noise residual for learning effective spatiotemporal forensic features. To enhance the discriminative power, supervised contrastive learning is adopted to capture the local inconsistency of inpainted videos through attracting/repelling the positive/negative pristine and forged pixel pairs. A pixel-wise inpainting localization map is yielded by a lightweight convolution decoder with a specialized two-stage training strategy. To prepare enough training samples, we build a video object segmentation dataset of 2500 videos with pixel-level annotations per frame. Extensive experimental results validate the superiority of ViLocal over state-of-the-arts. Code and dataset will be available at https://github.com/multimediaFor/ViLocal.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.