Papers
Topics
Authors
Recent
2000 character limit reached

Diffusion-based Adversarial Purification for Intrusion Detection (2406.17606v1)

Published 25 Jun 2024 in cs.CR, cs.AI, cs.LG, and stat.ML

Abstract: The escalating sophistication of cyberattacks has encouraged the integration of machine learning techniques in intrusion detection systems, but the rise of adversarial examples presents a significant challenge. These crafted perturbations mislead ML models, enabling attackers to evade detection or trigger false alerts. As a reaction, adversarial purification has emerged as a compelling solution, particularly with diffusion models showing promising results. However, their purification potential remains unexplored in the context of intrusion detection. This paper demonstrates the effectiveness of diffusion models in purifying adversarial examples in network intrusion detection. Through a comprehensive analysis of the diffusion parameters, we identify optimal configurations maximizing adversarial robustness with minimal impact on normal performance. Importantly, this study reveals insights into the relationship between diffusion noise and diffusion steps, representing a novel contribution to the field. Our experiments are carried out on two datasets and against 5 adversarial attacks. The implementation code is publicly available.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.