Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Modularity Based Community Detection in Hypergraphs (2406.17556v1)

Published 25 Jun 2024 in cs.SI and cs.LG

Abstract: In this paper, we propose a scalable community detection algorithm using hypergraph modularity function, h-Louvain. It is an adaptation of the classical Louvain algorithm in the context of hypergraphs. We observe that a direct application of the Louvain algorithm to optimize the hypergraph modularity function often fails to find meaningful communities. We propose a solution to this issue by adjusting the initial stage of the algorithm via carefully and dynamically tuned linear combination of the graph modularity function of the corresponding two-section graph and the desired hypergraph modularity function. The process is guided by Bayesian optimization of the hyper-parameters of the proposed procedure. Various experiments on synthetic as well as real-world networks are performed showing that this process yields improved results in various regimes.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube