Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Principal Component Clustering for Semantic Segmentation in Synthetic Data Generation (2406.17541v1)

Published 25 Jun 2024 in cs.CV

Abstract: This technical report outlines our method for generating a synthetic dataset for semantic segmentation using a latent diffusion model. Our approach eliminates the need for additional models specifically trained on segmentation data and is part of our submission to the CVPR 2024 workshop challenge, entitled CVPR 2024 workshop challenge "SyntaGen Harnessing Generative Models for Synthetic Visual Datasets". Our methodology uses self-attentions to facilitate a novel head-wise semantic information condensation, thereby enabling the direct acquisition of class-agnostic image segmentation from the Stable Diffusion latents. Furthermore, we employ non-prompt-influencing cross-attentions from text to pixel, thus facilitating the classification of the previously generated masks. Finally, we propose a mask refinement step by using only the output image by Stable Diffusion.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.