Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Principal Component Clustering for Semantic Segmentation in Synthetic Data Generation (2406.17541v1)

Published 25 Jun 2024 in cs.CV

Abstract: This technical report outlines our method for generating a synthetic dataset for semantic segmentation using a latent diffusion model. Our approach eliminates the need for additional models specifically trained on segmentation data and is part of our submission to the CVPR 2024 workshop challenge, entitled CVPR 2024 workshop challenge "SyntaGen Harnessing Generative Models for Synthetic Visual Datasets". Our methodology uses self-attentions to facilitate a novel head-wise semantic information condensation, thereby enabling the direct acquisition of class-agnostic image segmentation from the Stable Diffusion latents. Furthermore, we employ non-prompt-influencing cross-attentions from text to pixel, thus facilitating the classification of the previously generated masks. Finally, we propose a mask refinement step by using only the output image by Stable Diffusion.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.