Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using iterated local alignment to aggregate trajectory data into a traffic flow map (2406.17500v5)

Published 25 Jun 2024 in stat.AP and cs.CE

Abstract: Vehicle trajectories are a promising GNSS (Global Navigation Satellite System) data source to compute multi-scale traffic flow maps ranging from the city/regional level to the road level. The main obstacle is that trajectory data are prone to measurement noise. While this is negligible for city level, large-scale flow aggregation, it poses substantial difficulties for road level, small-scale aggregation. To overcome these difficulties, we introduce innovative local alignment algorithms, where we infer road segments to serve as local reference segments, and proceed to align nearby road segments to them. We deploy these algorithms in an iterative workflow to compute locally aligned flow maps. By applying this workflow to synthetic and empirical trajectories, we verify that our locally aligned flow maps provide high levels of accuracy and spatial resolution of flow aggregation at multiple scales for static and interactive maps.

Summary

We haven't generated a summary for this paper yet.