Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Using iterated local alignment to aggregate trajectory data into a traffic flow map (2406.17500v5)

Published 25 Jun 2024 in stat.AP and cs.CE

Abstract: Vehicle trajectories are a promising GNSS (Global Navigation Satellite System) data source to compute multi-scale traffic flow maps ranging from the city/regional level to the road level. The main obstacle is that trajectory data are prone to measurement noise. While this is negligible for city level, large-scale flow aggregation, it poses substantial difficulties for road level, small-scale aggregation. To overcome these difficulties, we introduce innovative local alignment algorithms, where we infer road segments to serve as local reference segments, and proceed to align nearby road segments to them. We deploy these algorithms in an iterative workflow to compute locally aligned flow maps. By applying this workflow to synthetic and empirical trajectories, we verify that our locally aligned flow maps provide high levels of accuracy and spatial resolution of flow aggregation at multiple scales for static and interactive maps.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)