Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 31 tok/s Pro
2000 character limit reached

On the correlation between Architectural Smells and Static Analysis Warnings (2406.17354v1)

Published 25 Jun 2024 in cs.SE and cs.DC

Abstract: Background. Software quality assurance is essential during software development and maintenance. Static Analysis Tools (SAT) are widely used for assessing code quality. Architectural smells are becoming more daunting to address and evaluate among quality issues. Objective. We aim to understand the relationships between static analysis warnings (SAW) and architectural smells (AS) to guide developers/maintainers in focusing their efforts on SAWs more prone to co-occurring with AS. Method. We performed an empirical study on 103 Java projects totaling 72 million LOC belonging to projects from a vast set of domains, and 785 SAW detected by four SAT, Checkstyle, Findbugs, PMD, SonarQube, and 4 architectural smells detected by ARCAN tool. We analyzed how SAWs influence AS presence. Finally, we proposed an AS remediation effort prioritization based on SAW severity and SAW proneness to specific ASs. Results. Our study reveals a moderate correlation between SAWs and ASs. Different combinations of SATs and SAWs significantly affect AS occurrence, with certain SAWs more likely to co-occur with specific ASs. Conversely, 33.79% of SAWs act as "healthy carriers", not associated with any ASs. Conclusion. Practitioners can ignore about a third of SAWs and focus on those most likely to be associated with ASs. Prioritizing AS remediation based on SAW severity or SAW proneness to specific ASs results in effective rankings like those based on AS severity.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube