Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Masked Generative Extractor for Synergistic Representation and 3D Generation of Point Clouds (2406.17342v2)

Published 25 Jun 2024 in cs.CV and cs.AI

Abstract: Representation and generative learning, as reconstruction-based methods, have demonstrated their potential for mutual reinforcement across various domains. In the field of point cloud processing, although existing studies have adopted training strategies from generative models to enhance representational capabilities, these methods are limited by their inability to genuinely generate 3D shapes. To explore the benefits of deeply integrating 3D representation learning and generative learning, we propose an innovative framework called \textit{Point-MGE}. Specifically, this framework first utilizes a vector quantized variational autoencoder to reconstruct a neural field representation of 3D shapes, thereby learning discrete semantic features of point patches. Subsequently, we design a sliding masking ratios to smooth the transition from representation learning to generative learning. Moreover, our method demonstrates strong generalization capability in learning high-capacity models, achieving new state-of-the-art performance across multiple downstream tasks. In shape classification, Point-MGE achieved an accuracy of 94.2% (+1.0%) on the ModelNet40 dataset and 92.9% (+5.5%) on the ScanObjectNN dataset. Experimental results also confirmed that Point-MGE can generate high-quality 3D shapes in both unconditional and conditional settings.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.