Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Speaker-Independent Acoustic-to-Articulatory Inversion through Multi-Channel Attention Discriminator (2406.17329v1)

Published 25 Jun 2024 in eess.SP, cs.SD, eess.AS, and physics.bio-ph

Abstract: We present a novel speaker-independent acoustic-to-articulatory inversion (AAI) model, overcoming the limitations observed in conventional AAI models that rely on acoustic features derived from restricted datasets. To address these challenges, we leverage representations from a pre-trained self-supervised learning (SSL) model to more effectively estimate the global, local, and kinematic pattern information in Electromagnetic Articulography (EMA) signals during the AAI process. We train our model using an adversarial approach and introduce an attention-based Multi-duration phoneme discriminator (MDPD) designed to fully capture the intricate relationship among multi-channel articulatory signals. Our method achieves a Pearson correlation coefficient of 0.847, marking state-of-the-art performance in speaker-independent AAI models. The implementation details and code can be found online.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.