Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

How Well Can Knowledge Edit Methods Edit Perplexing Knowledge? (2406.17253v2)

Published 25 Jun 2024 in cs.CL

Abstract: LLMs have demonstrated remarkable capabilities, but updating their knowledge post-training remains a critical challenge. While recent model editing techniques like Rank-One Model Editing (ROME) show promise, their effectiveness may vary based on the nature of the knowledge being edited. We introduce the concept of perplexingness'': the degree to which new knowledge conflicts with an LLM's learned conceptual hierarchies and categorical relationships. For instance, editingBritish Shorthair is a kind of cat'' to British Shorthair is a kind of dog'' represents a low-perplexingness edit within the same taxonomic level, while editingA cat is a kind of animal'' to ``A cat is a kind of plant'' represents a high-perplexingness edit that violates fundamental categorical boundaries. To systematically investigate this phenomenon, we introduce HierarchyData, a carefully curated dataset of 99 hyponym-hypernym pairs across diverse categories. Through controlled experiments across three models and four editing methods, we demonstrate a strong negative correlation between the perplexingness of new knowledge and the effectiveness of knowledge editing. Our analysis reveals that edits involving more abstract concepts (hypernyms) generally exhibit higher perplexingness and are more resistant to modification than their specific counterparts (hyponyms). These findings highlight a fundamental challenge in LLM knowledge editing: the more a new fact contradicts an LLM's learned conceptual hierarchies, the harder it becomes to reliably encode that knowledge.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.