Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Large Language Models are Interpretable Learners (2406.17224v1)

Published 25 Jun 2024 in cs.AI, cs.CL, cs.CV, cs.LG, and cs.SC

Abstract: The trade-off between expressiveness and interpretability remains a core challenge when building human-centric predictive models for classification and decision-making. While symbolic rules offer interpretability, they often lack expressiveness, whereas neural networks excel in performance but are known for being black boxes. In this paper, we show a combination of LLMs and symbolic programs can bridge this gap. In the proposed LLM-based Symbolic Programs (LSPs), the pretrained LLM with natural language prompts provides a massive set of interpretable modules that can transform raw input into natural language concepts. Symbolic programs then integrate these modules into an interpretable decision rule. To train LSPs, we develop a divide-and-conquer approach to incrementally build the program from scratch, where the learning process of each step is guided by LLMs. To evaluate the effectiveness of LSPs in extracting interpretable and accurate knowledge from data, we introduce IL-Bench, a collection of diverse tasks, including both synthetic and real-world scenarios across different modalities. Empirical results demonstrate LSP's superior performance compared to traditional neurosymbolic programs and vanilla automatic prompt tuning methods. Moreover, as the knowledge learned by LSP is a combination of natural language descriptions and symbolic rules, it is easily transferable to humans (interpretable), and other LLMs, and generalizes well to out-of-distribution samples.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 6 likes.

Upgrade to Pro to view all of the tweets about this paper: