Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Retrieval-Augmented Mixture of LoRA Experts for Uploadable Machine Learning (2406.16989v2)

Published 24 Jun 2024 in cs.LG and cs.AI

Abstract: Low-Rank Adaptation (LoRA) offers an efficient way to fine-tune LLMs. Its modular and plug-and-play nature allows the integration of various domain-specific LoRAs, enhancing LLM capabilities. Open-source platforms like Huggingface and Modelscope have introduced a new computational paradigm, Uploadable Machine Learning (UML). In UML, contributors use decentralized data to train specialized adapters, which are then uploaded to a central platform to improve LLMs. This platform uses these domain-specific adapters to handle mixed-task requests requiring personalized service. Previous research on LoRA composition either focuses on specific tasks or fixes the LoRA selection during training. However, in UML, the pool of LoRAs is dynamically updated with new uploads, requiring a generalizable selection mechanism for unseen LoRAs. Additionally, the mixed-task nature of downstream requests necessitates personalized services. To address these challenges, we propose Retrieval-Augmented Mixture of LoRA Experts (RAMoLE), a framework that adaptively retrieves and composes multiple LoRAs based on input prompts. RAMoLE has three main components: LoraRetriever for identifying and retrieving relevant LoRAs, an on-the-fly MoLE mechanism for coordinating the retrieved LoRAs, and efficient batch inference for handling heterogeneous requests. Experimental results show that RAMoLE consistently outperforms baselines, highlighting its effectiveness and scalability.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: