Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

AI for Equitable Tennis Training: Leveraging AI for Equitable and Accurate Classification of Tennis Skill Levels and Training Phases (2406.16987v1)

Published 24 Jun 2024 in eess.SP and cs.LG

Abstract: Numerous studies have demonstrated the manifold benefits of tennis, such as increasing overall physical and mental health. Unfortunately, many children and youth from low-income families are unable to engage in this sport mainly due to financial constraints such as private lesson expenses as well as logistical concerns to and back from such lessons and clinics. While several tennis self-training systems exist, they are often tailored for professionals and are prohibitively expensive. The present study aims to classify tennis players' skill levels and classify tennis strokes into phases characterized by motion attributes for a future development of an AI-based tennis self-training model for affordable and convenient applications running on devices used in daily life such as an iPhone or an Apple Watch for tennis skill improvement. We collected motion data, including Motion Yaw, Roll and Pitch from inertial measurement units (IMUs) worn by participating junior tennis players. For this pilot study, data from twelve participants were processed using Support Vector Machine (SVM) algorithms. The SVM models demonstrated an overall accuracy of 77% in classifying players as beginners or intermediates, with low rates of false positives and false negatives, effectively distinguishing skill levels. Additionally, the tennis swings were successfully classified into five phases based on the collected motion data. These findings indicate that SVM-based classification can be a reliable foundation for developing an equitable and accessible AI-driven tennis training system.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com