Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Addressing Polarization and Unfairness in Performative Prediction (2406.16756v1)

Published 24 Jun 2024 in cs.LG, cs.AI, and cs.CY

Abstract: When ML models are used in applications that involve humans (e.g., online recommendation, school admission, hiring, lending), the model itself may trigger changes in the distribution of targeted data it aims to predict. Performative prediction (PP) is a framework that explicitly considers such model-dependent distribution shifts when learning ML models. While significant efforts have been devoted to finding performative stable (PS) solutions in PP for system robustness, their societal implications are less explored and it is unclear whether PS solutions are aligned with social norms such as fairness. In this paper, we set out to examine the fairness property of PS solutions in performative prediction. We first show that PS solutions can incur severe polarization effects and group-wise loss disparity. Although existing fairness mechanisms commonly used in literature can help mitigate unfairness, they may fail and disrupt the stability under model-dependent distribution shifts. We thus propose novel fairness intervention mechanisms that can simultaneously achieve both stability and fairness in PP settings. Both theoretical analysis and experiments are provided to validate the proposed method.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com