Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 89 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

GC4NC: A Benchmark Framework for Graph Condensation on Node Classification with New Insights (2406.16715v2)

Published 24 Jun 2024 in cs.LG

Abstract: Graph condensation (GC) is an emerging technique designed to learn a significantly smaller graph that retains the essential information of the original graph. This condensed graph has shown promise in accelerating graph neural networks while preserving performance comparable to those achieved with the original, larger graphs. Additionally, this technique facilitates downstream applications like neural architecture search and deepens our understanding of redundancies in large graphs. Despite the rapid development of GC methods, particularly for node classification, a unified evaluation framework is still lacking to systematically compare different GC methods or clarify key design choices for improving their effectiveness. To bridge these gaps, we introduce \textbf{GC4NC}, a comprehensive framework for evaluating diverse GC methods on node classification across multiple dimensions including performance, efficiency, privacy preservation, denoising ability, NAS effectiveness, and transferability. Our systematic evaluation offers novel insights into how condensed graphs behave and the critical design choices that drive their success. These findings pave the way for future advancements in GC methods, enhancing both performance and expanding their real-world applications. Our code is available at \url{https://github.com/Emory-Melody/GraphSlim/tree/main/benchmark}.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.