Papers
Topics
Authors
Recent
2000 character limit reached

ShadowLLM: Predictor-based Contextual Sparsity for Large Language Models (2406.16635v2)

Published 24 Jun 2024 in cs.LG, cs.AI, and cs.CL

Abstract: The high power consumption and latency-sensitive deployments of LLMs have motivated efficiency techniques like quantization and sparsity. Contextual sparsity, where the sparsity pattern is input-dependent, is crucial in LLMs because the permanent removal of attention heads or neurons from LLMs can significantly degrade accuracy. Prior work has attempted to model contextual sparsity using neural networks trained to predict activation magnitudes, which can be used to dynamically prune structures with low predicted activation magnitude. In this paper, we look beyond magnitude-based pruning criteria to assess attention head and neuron importance in LLMs. We develop a novel predictor called ShadowLLM, which can shadow the LLM behavior and enforce better sparsity patterns, resulting in over 15% improvement in end-to-end accuracy compared to prior methods. In addition, ShadowLLM achieves up to a 20% speed-up over the state-of-the-art DejaVu framework. These enhancements are validated on Llama-2 and OPT models with up to 30 billion parameters. Our code is available at \href{https://github.com/abdelfattah-lab/shadow_llm/}{ShadowLLM}.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 6 tweets with 21 likes about this paper.