Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Random Forest Prediction of Crystal Structure from Electron Diffraction Patterns Incorporating Multiple Scattering (2406.16310v2)

Published 24 Jun 2024 in cond-mat.mtrl-sci

Abstract: Diffraction is the most common method to solve for unknown or partially known crystal structures. However, it remains a challenge to determine the crystal structure of a new material that may have nanoscale size or heterogeneities. Here we train an architecture of hierarchical random forest models capable of predicting the crystal system, space group, and lattice parameters from one or more unknown 2D electron diffraction patterns. Our initial model correctly identifies the crystal system of a simulated electron diffraction pattern from a 20 nm thick specimen of arbitrary orientation 67% of the time. We achieve a topline accuracy of 79% when aggregating predictions from 10 patterns of the same material but different zone axes. The space group and lattice predictions range from 70-90% accuracy and median errors of 0.01-0.5 angstroms, respectively, for cubic, hexagonal, trigonal and tetragonal crystal systems while being less reliable on orthorhombic and monoclinic systems. We apply this architecture to a 4D-STEM scan of gold nanoparticles, where it accurately predicts the crystal structure and lattice constants. These random forest models can be used to significantly accelerate the analysis of electron diffraction patterns, particularly in the case of unknown crystal structures. Additionally, due to the speed of inference, these models could be integrated into live TEM experiments, allowing real-time labeling of a specimen.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 70 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube