Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PlagBench: Exploring the Duality of Large Language Models in Plagiarism Generation and Detection (2406.16288v2)

Published 24 Jun 2024 in cs.CL

Abstract: Recent studies have raised concerns about the potential threats LLMs pose to academic integrity and copyright protection. Yet, their investigation is predominantly focused on literal copies of original texts. Also, how LLMs can facilitate the detection of LLM-generated plagiarism remains largely unexplored. To address these gaps, we introduce \textbf{{\sf PlagBench}}, a dataset of 46.5K synthetic text pairs that represent three major types of plagiarism: verbatim copying, paraphrasing, and summarization. These samples are generated by three advanced LLMs. We rigorously validate the quality of PlagBench through a combination of fine-grained automatic evaluation and human annotation. We then utilize this dataset for two purposes: (1) to examine LLMs' ability to transform original content into accurate paraphrases and summaries, and (2) to evaluate the plagiarism detection performance of five modern LLMs alongside three specialized plagiarism checkers. Our results show that GPT-3.5 Turbo can produce high-quality paraphrases and summaries without significantly increasing text complexity compared to GPT-4 Turbo. However, in terms of detection, GPT-4 outperforms other LLMs and commercial detection tools by 20%, highlights the evolving capabilities of LLMs not only in content generation but also in plagiarism detection. Data and source code are available at https://github.com/Brit7777/plagbench.

Summary

We haven't generated a summary for this paper yet.