Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Evaluating Serverless Machine Learning Performance on Google Cloud Run (2406.16250v1)

Published 24 Jun 2024 in cs.DC and cs.OS

Abstract: End-users can get functions-as-a-service from serverless platforms, which promise lower hosting costs, high availability, fault tolerance, and dynamic flexibility for hosting individual functions known as microservices. Machine learning tools are seen to be reliably useful, and the services created using these tools are in increasing demand on a large scale. The serverless platforms are uniquely suited for hosting these machine learning services to be used for large-scale applications. These platforms are well known for their cost efficiency, fault tolerance, resource scaling, robust APIs for communication, and global reach. However, machine learning services are different from the web-services in that these serverless platforms were originally designed to host web services. We aimed to understand how these serverless platforms handle machine learning workloads with our study. We examine machine learning performance on one of the serverless platforms - Google Cloud Run, which is a GPU-less infrastructure that is not designed for machine learning application deployment.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.