Papers
Topics
Authors
Recent
2000 character limit reached

VICatMix: variational Bayesian clustering and variable selection for discrete biomedical data (2406.16227v1)

Published 23 Jun 2024 in stat.ML, cs.LG, and stat.ME

Abstract: Effective clustering of biomedical data is crucial in precision medicine, enabling accurate stratifiction of patients or samples. However, the growth in availability of high-dimensional categorical data, including omics data, necessitates computationally efficient clustering algorithms. We present VICatMix, a variational Bayesian finite mixture model designed for the clustering of categorical data. The use of variational inference (VI) in its training allows the model to outperform competitors in term of efficiency, while maintaining high accuracy. VICatMix furthermore performs variable selection, enhancing its performance on high-dimensional, noisy data. The proposed model incorporates summarisation and model averaging to mitigate poor local optima in VI, allowing for improved estimation of the true number of clusters simultaneously with feature saliency. We demonstrate the performance of VICatMix with both simulated and real-world data, including applications to datasets from The Cancer Genome Atlas (TCGA), showing its use in cancer subtyping and driver gene discovery. We demonstrate VICatMix's utility in integrative cluster analysis with differentomics datasets, enabling the discovery of novel subtypes. \textbf{Availability:} VICatMix is freely available as an R package, incorporating C++ for faster computation, at \url{https://github.com/j-ackierao/VICatMix}.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 19 likes about this paper.