Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 126 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On The Effectiveness of Dynamic Reduction Techniques in Automated Program Repair (2406.16225v1)

Published 23 Jun 2024 in cs.SE

Abstract: Repairing a large-scale buggy program using current automated program repair (APR) approaches can be a time-consuming operation that requires significant computational resources. We describe a program repair framework that effectively handles large-scale buggy programs of industrial complexity. The framework exploits program reduction in the form of program slicing to eliminate parts of the code irrelevant to the bug being repaired without adversely affecting the capability of the repair system in producing correct patches. Observation-based slicing is a recently introduced, language-independent slicing technique that shows a good effectiveness in a wide range of applications. In this work, we show how ORBS can be effectively integrated with APR to improve all aspects of the repair process including the fault localization step, patch generation step, and patch validation step. The presented repair framework indeed enhances the capability of APR by reducing the execution cost of a test suite and the search cost for the appropriate faulty statement corresponding to the bug being repair. Our empirical results on the widely used Defects4J dataset reveal that a substantial improvement in performance can be obtained without any degradation in repair quality.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube