Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Hardware-Aware Neural Dropout Search for Reliable Uncertainty Prediction on FPGA (2406.16198v1)

Published 23 Jun 2024 in cs.LG and cs.AR

Abstract: The increasing deployment of AI for critical decision-making amplifies the necessity for trustworthy AI, where uncertainty estimation plays a pivotal role in ensuring trustworthiness. Dropout-based Bayesian Neural Networks (BayesNNs) are prominent in this field, offering reliable uncertainty estimates. Despite their effectiveness, existing dropout-based BayesNNs typically employ a uniform dropout design across different layers, leading to suboptimal performance. Moreover, as diverse applications require tailored dropout strategies for optimal performance, manually optimizing dropout configurations for various applications is both error-prone and labor-intensive. To address these challenges, this paper proposes a novel neural dropout search framework that automatically optimizes both the dropout-based BayesNNs and their hardware implementations on FPGA. We leverage one-shot supernet training with an evolutionary algorithm for efficient dropout optimization. A layer-wise dropout search space is introduced to enable the automatic design of dropout-based BayesNNs with heterogeneous dropout configurations. Extensive experiments demonstrate that our proposed framework can effectively find design configurations on the Pareto frontier. Compared to manually-designed dropout-based BayesNNs on GPU, our search approach produces FPGA designs that can achieve up to 33X higher energy efficiency. Compared to state-of-the-art FPGA designs of BayesNN, the solutions from our approach can achieve higher algorithmic performance and energy efficiency.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube