Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models (2406.16135v2)
Abstract: LLMs are typically multilingual due to pretraining on diverse multilingual corpora. But can these models relate corresponding concepts across languages, i.e., be crosslingual? This study evaluates state-of-the-art LLMs on inherently crosslingual tasks. We observe that while these models show promising surface-level crosslingual abilities on machine translation and embedding space analyses, they struggle with deeper crosslingual knowledge transfer, revealing a crosslingual knowledge barrier in both general (MMLU benchmark) and domain-specific (Harry Potter quiz and TOFU benchmark) contexts. Since simple inference-time mitigation methods offer only limited improvement, we propose fine-tuning of LLMs on mixed-language data, which effectively reduces these gaps, even when using out-of-domain datasets like WikiText. Our findings suggest the need for explicit optimization to unlock the full crosslingual potential of LLMs. Our code is publicly available at https://github.com/google-research/crosslingual-knowledge-barriers.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.