Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A projected Euler Method for Random Periodic Solutions of Semi-linear SDEs with non-globally Lipschitz coefficients (2406.16089v3)

Published 23 Jun 2024 in math.NA, cs.NA, and math.PR

Abstract: The present work introduces and investigates an explicit time discretization scheme, called the projected Euler method,to numerically approximate random periodic solutions of semi-linear SDEs under non-globally Lipschitz conditions. The existence of the random periodic solution is demonstrated as the limit of the pull-back of the discretized SDE. Without relying on a priori high-order moment bounds of the numerical approximations, the mean square convergence rate of the approximation scheme is proved to be order $0.5$ for SDEs with multiplicative noise and order $1$ for SDEs with additive noise. Numerical examples are also provided to validate our theoretical findings.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com