Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Learning k-Determinantal Point Processes for Personalized Ranking (2406.15983v1)

Published 23 Jun 2024 in cs.IR

Abstract: The key to personalized recommendation is to predict a personalized ranking on a catalog of items by modeling the user's preferences. There are many personalized ranking approaches for item recommendation from implicit feedback like Bayesian Personalized Ranking (BPR) and listwise ranking. Despite these methods have shown performance benefits, there are still limitations affecting recommendation performance. First, none of them directly optimize ranking of sets, causing inadequate exploitation of correlations among multiple items. Second, the diversity aspect of recommendations is insufficiently addressed compared to relevance. In this work, we present a new optimization criterion LkP based on set probability comparison for personalized ranking that moves beyond traditional ranking-based methods. It formalizes set-level relevance and diversity ranking comparisons through a Determinantal Point Process (DPP) kernel decomposition. To confer ranking interpretability to the DPP set probabilities and prioritize the practicality of LkP, we condition the standard DPP on the cardinality k of the DPP-distributed set, known as k-DPP, a less-explored extension of DPP. The generic stochastic gradient descent based technique can be directly applied to optimizing models that employ LkP. We implement LkP in the context of both Matrix Factorization (MF) and neural networks approaches, on three real-world datasets, obtaining improved relevance and diversity performances. LkP is broadly applicable, and when applied to existing recommendation models it also yields strong performance improvements, suggesting that LkP holds significant value to the field of recommender systems.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: