Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Generating Music with Structure Using Self-Similarity as Attention (2406.15647v2)

Published 21 Jun 2024 in cs.SD, cs.LG, and eess.AS

Abstract: Despite the innovations in deep learning and generative AI, creating long term structure as well as the layers of repeated structure common in musical works remains an open challenge in music generation. We propose an attention layer that uses a novel approach applying user-supplied self-similarity matrices to previous time steps, and demonstrate it in our Similarity Incentivized Neural Generator (SING) system, a deep learning autonomous music generation system with two layers. The first is a vanilla Long Short Term Memory layer, and the second is the proposed attention layer. During generation, this attention mechanism imposes a suggested structure from a template piece on the generated music. We train SING on the MAESTRO dataset using a novel variable batching method, and compare its performance to the same model without the attention mechanism. The addition of our proposed attention mechanism significantly improves the network's ability to replicate specific structures, and it performs better on an unseen test set than a model without the attention mechanism.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.