Papers
Topics
Authors
Recent
2000 character limit reached

On Naive Mean-Field Approximation for high-dimensional canonical GLMs (2406.15247v1)

Published 21 Jun 2024 in math.ST, cs.IT, math.IT, math.PR, and stat.TH

Abstract: We study the validity of the Naive Mean Field (NMF) approximation for canonical GLMs with product priors. This setting is challenging due to the non-conjugacy of the likelihood and the prior. Using the theory of non-linear large deviations (Austin 2019, Chatterjee, Dembo 2016, Eldan 2018), we derive sufficient conditions for the tightness of the NMF approximation to the log-normalizing constant of the posterior distribution. As a second contribution, we establish that under minor conditions on the design, any NMF optimizer is a product distribution where each component is a quadratic tilt of the prior. In turn, this suggests novel iterative algorithms for fitting the NMF optimizer to the target posterior. Finally, we establish that if the NMF optimization problem has a "well-separated maximizer", then this optimizer governs the probabilistic properties of the posterior. Specifically, we derive credible intervals with average coverage guarantees, and characterize the prediction performance on an out-of-sample datapoint in terms of this dominant optimizer.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.