Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 91 tok/s
Gemini 3.0 Pro 55 tok/s
Gemini 2.5 Flash 173 tok/s Pro
Kimi K2 194 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Real-Time Hand Gesture Recognition: Integrating Skeleton-Based Data Fusion and Multi-Stream CNN (2406.15003v2)

Published 21 Jun 2024 in cs.CV and cs.HC

Abstract: Hand Gesture Recognition (HGR) enables intuitive human-computer interactions in various real-world contexts. However, existing frameworks often struggle to meet the real-time requirements essential for practical HGR applications. This study introduces a robust, skeleton-based framework for dynamic HGR that simplifies the recognition of dynamic hand gestures into a static image classification task, effectively reducing both hardware and computational demands. Our framework utilizes a data-level fusion technique to encode 3D skeleton data from dynamic gestures into static RGB spatiotemporal images. It incorporates a specialized end-to-end Ensemble Tuner (e2eET) Multi-Stream CNN architecture that optimizes the semantic connections between data representations while minimizing computational needs. Tested across five benchmark datasets (SHREC'17, DHG-14/28, FPHA, LMDHG, and CNR), the framework showed competitive performance with the state-of-the-art. Its capability to support real-time HGR applications was also demonstrated through deployment on standard consumer PC hardware, showcasing low latency and minimal resource usage in real-world settings. The successful deployment of this framework underscores its potential to enhance real-time applications in fields such as virtual/augmented reality, ambient intelligence, and assistive technologies, providing a scalable and efficient solution for dynamic gesture recognition.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: