Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Wasserstein convergence of Čech persistence diagrams for samplings of submanifolds (2406.14919v2)

Published 21 Jun 2024 in cs.CG and math.PR

Abstract: \v{C}ech Persistence diagrams (PDs) are topological descriptors routinely used to capture the geometry of complex datasets. They are commonly compared using the Wasserstein distances $OT_{p}$; however, the extent to which PDs are stable with respect to these metrics remains poorly understood. We partially close this gap by focusing on the case where datasets are sampled on an $m$-dimensional submanifold of $\mathbb{R}{d}$. Under this manifold hypothesis, we show that convergence with respect to the $OT_{p}$ metric happens exactly when $p\gt m$. We also provide improvements upon the bottleneck stability theorem in this case and prove new laws of large numbers for the total $\alpha$-persistence of PDs. Finally, we show how these theoretical findings shed new light on the behavior of the feature maps on the space of PDs that are used in ML-oriented applications of Topological Data Analysis.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com