Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Demonstrating the Efficacy of Kolmogorov-Arnold Networks in Vision Tasks (2406.14916v1)

Published 21 Jun 2024 in cs.CV, cs.AI, and cs.LG

Abstract: In the realm of deep learning, the Kolmogorov-Arnold Network (KAN) has emerged as a potential alternative to multilayer projections (MLPs). However, its applicability to vision tasks has not been extensively validated. In our study, we demonstrated the effectiveness of KAN for vision tasks through multiple trials on the MNIST, CIFAR10, and CIFAR100 datasets, using a training batch size of 32. Our results showed that while KAN outperformed the original MLP-Mixer on CIFAR10 and CIFAR100, it performed slightly worse than the state-of-the-art ResNet-18. These findings suggest that KAN holds significant promise for vision tasks, and further modifications could enhance its performance in future evaluations.Our contributions are threefold: first, we showcase the efficiency of KAN-based algorithms for visual tasks; second, we provide extensive empirical assessments across various vision benchmarks, comparing KAN's performance with MLP-Mixer, CNNs, and Vision Transformers (ViT); and third, we pioneer the use of natural KAN layers in visual tasks, addressing a gap in previous research. This paper lays the foundation for future studies on KANs, highlighting their potential as a reliable alternative for image classification tasks.

Citations (21)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)