Papers
Topics
Authors
Recent
2000 character limit reached

Identifying Inaccurate Descriptions in LLM-generated Code Comments via Test Execution (2406.14836v1)

Published 21 Jun 2024 in cs.SE

Abstract: Software comments are critical for human understanding of software, and as such many comment generation techniques have been proposed. However, we find that a systematic evaluation of the factual accuracy of generated comments is rare; only subjective accuracy labels have been given. Evaluating comments generated by three LLMs, we find that even for the best-performing LLM, roughly a fifth of its comments contained demonstrably inaccurate statements. While it seems code-comment consistency detection techniques should be able to detect inaccurate comments, we perform experiments demonstrating they have no statistically significant relationship with comment accuracy, underscoring the substantial difficulty of this problem. To tackle this, we propose the concept of document testing, in which a document is verified by using an LLM to generate tests based on the document, running those tests, and observing whether they pass or fail. Furthermore, we implement our concept to verify Java comments. Experiments demonstrate that our approach has a robust statistical relationship with comment accuracy, making headway into a problem where prior techniques failed. Qualitative evaluation also reveals the promise of our approach in gaining developer trust, while highlighting the limitations of our current implementation.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.