Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Model Predictive Control of the Neural Manifold (2406.14801v1)

Published 21 Jun 2024 in q-bio.NC, cs.SY, eess.SY, and q-bio.QM

Abstract: Neural manifolds are an attractive theoretical framework for characterizing the complex behaviors of neural populations. However, many of the tools for identifying these low-dimensional subspaces are correlational and provide limited insight into the underlying dynamics. The ability to precisely control this latent activity would allow researchers to investigate the structure and function of neural manifolds. Employing techniques from the field of optimal control, we simulate controlling the latent dynamics of a neural population using closed-loop, dynamically generated sensory inputs. Using a spiking neural network (SNN) as a model of a neural circuit, we find low-dimensional representations of both the network activity (the neural manifold) and a set of salient visual stimuli. With a data-driven latent dynamics model, we apply model predictive control (MPC) to provide anticipatory, optimal control over the trajectory of the circuit in a latent space. We are able to control the latent dynamics of the SNN to follow several reference trajectories despite observing only a subset of neurons and with a substantial amount of unknown noise injected into the network. These results provide a framework to experimentally test for causal relationships between manifold dynamics and other variables of interest such as organismal behavior and BCI performance.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube