Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A Learn-Then-Reason Model Towards Generalization in Knowledge Base Question Answering (2406.14763v1)

Published 20 Jun 2024 in cs.CL and cs.AI

Abstract: Large-scale knowledge bases (KBs) like Freebase and Wikidata house millions of structured knowledge. Knowledge Base Question Answering (KBQA) provides a user-friendly way to access these valuable KBs via asking natural language questions. In order to improve the generalization capabilities of KBQA models, extensive research has embraced a retrieve-then-reason framework to retrieve relevant evidence for logical expression generation. These multi-stage efforts prioritize acquiring external sources but overlook the incorporation of new knowledge into their model parameters. In effect, even advanced LLMs and retrievers have knowledge boundaries, thereby limiting the generalization capabilities of previous KBQA models. Therefore, this paper develops KBLLaMA, which follows a learn-then-reason framework to inject new KB knowledge into a LLM for flexible end-to-end KBQA. At the core of KBLLaMA, we study (1) how to organize new knowledge about KBQA and (2) how to facilitate the learning of the organized knowledge. Extensive experiments on various KBQA generalization tasks showcase the state-of-the-art performance of KBLLaMA. Especially on the general benchmark GrailQA and domain-specific benchmark Bio-chemical, KBLLaMA respectively derives a performance gain of up to 3.8% and 9.8% compared to the baselines.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets