Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Large Language Model Outperforms Other Computational Approaches to the High-Throughput Phenotyping of Physician Notes (2406.14757v1)

Published 20 Jun 2024 in cs.AI

Abstract: High-throughput phenotyping, the automated mapping of patient signs and symptoms to standardized ontology concepts, is essential to gaining value from electronic health records (EHR) in the support of precision medicine. Despite technological advances, high-throughput phenotyping remains a challenge. This study compares three computational approaches to high-throughput phenotyping: a LLM incorporating generative AI, a NLP approach utilizing deep learning for span categorization, and a hybrid approach combining word vectors with machine learning. The approach that implemented GPT-4 (a LLM) demonstrated superior performance, suggesting that LLMs are poised to be the preferred method for high-throughput phenotyping of physician notes.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: