Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Behavior-Inspired Neural Networks for Relational Inference (2406.14746v3)

Published 20 Jun 2024 in cs.LG and cs.RO

Abstract: From pedestrians to Kuramoto oscillators, interactions between agents govern how dynamical systems evolve in space and time. Discovering how these agents relate to each other has the potential to improve our understanding of the often complex dynamics that underlie these systems. Recent works learn to categorize relationships between agents based on observations of their physical behavior. These approaches model relationship categories as outcomes of a categorical distribution which is limiting and contrary to real-world systems, where relationship categories often intermingle and interact. In this work, we introduce a level of abstraction between the observable behavior of agents and the latent categories that determine their behavior. To do this, we learn a mapping from agent observations to agent preferences for a set of latent categories. The learned preferences and inter-agent proximity are integrated in a nonlinear opinion dynamics model, which allows us to naturally identify mutually exclusive categories, predict an agent's evolution in time, and control an agent's behavior. Through extensive experiments, we demonstrate the utility of our model for learning interpretable categories, and the efficacy of our model for long-horizon trajectory prediction.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube