Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A macroscopic pedestrian model with variable maximal density (2406.14649v2)

Published 20 Jun 2024 in math.DS, cs.NA, and math.NA

Abstract: In this paper we propose a novel macroscopic (fluid dynamics) model for describing pedestrian flow in low and high density regimes. The model is characterized by the fact that the maximal density reachable by the crowd - usually a fixed model parameter - is instead a state variable. To do that, the model couples a conservation law, devised as usual for tracking the evolution of the crowd density, with a Burgers-like PDE with a nonlocal term describing the evolution of the maximal density. The variable maximal density is used here to describe the effects of the psychological/physical pushing forces which are observed in crowds during competitive or emergency situations. Specific attention is also dedicated to the fundamental diagram, i.e., the function which expresses the relationship between crowd density and flux. Although the model needs a well defined fundamental diagram as known input parameter, it is not evident a priori which relationship between density and flux will be actually observed, due to the time-varying maximal density. An a posteriori analysis shows that the observed fundamental diagram has an elongated "tail" in the congested region, thus resulting similar to the concave/concave fundamental diagram with a "double hump" observed in real crowds. The main features of the model are investigated through 1D and 2D numerical simulations. The numerical code for the 1D simulation is freely available at https://gitlab.com/cristiani77/code_arxiv_2406.14649

Summary

We haven't generated a summary for this paper yet.