Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
104 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

VLM Agents Generate Their Own Memories: Distilling Experience into Embodied Programs of Thought (2406.14596v5)

Published 20 Jun 2024 in cs.CV, cs.AI, and cs.LG

Abstract: Large-scale LLMs and VLMs excel at few-shot learning but require high-quality examples. We introduce In-Context Abstraction Learning (ICAL), which iteratively refines suboptimal trajectories into high-quality data with optimized actions and detailed reasoning. Given an inefficient demonstration, a VLM corrects actions and annotates causal relationships, object states, subgoals, and task-relevant visuals, forming "programs of thought." With human feedback, these programs are improved as the agent executes them in a similar environment. The resulting examples, used as prompt context or fine-tuning data, significantly boost decision-making while reducing human feedback needs. ICAL surpasses state-of-the-art in TEACh (dialogue-based instruction following), VisualWebArena (multimodal web agents), and Ego4D (egocentric video action anticipation). In TEACh, combining fine-tuning and retrieval on ICAL examples outperforms raw human demonstrations and expert examples, achieving a 17.5% increase in goal-condition success. In VisualWebArena, retrieval-augmented GPT-4V with ICAL improves task success rate 1.6x over GPT-4V, while fine-tuning Qwen2-VL achieves a 2.8x improvement. In Ego4D, ICAL outperforms few-shot GPT-4V and remains competitive with supervised models. Overall, ICAL scales 2x better than raw human demonstrations and reduces manual prompt engineering.

Citations (4)

Summary

We haven't generated a summary for this paper yet.