Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 179 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

ReflectanceFusion: Diffusion-based text to SVBRDF Generation (2406.14565v1)

Published 25 Apr 2024 in cs.GR and cs.CV

Abstract: We introduce Reflectance Diffusion, a new neural text-to-texture model capable of generating high-fidelity SVBRDF maps from textual descriptions. Our method leverages a tandem neural approach, consisting of two modules, to accurately model the distribution of spatially varying reflectance as described by text prompts. Initially, we employ a pre-trained stable diffusion 2 model to generate a latent representation that informs the overall shape of the material and serves as our backbone model. Then, our ReflectanceUNet enables fine-tuning control over the material's physical appearance and generates SVBRDF maps. ReflectanceUNet module is trained on an extensive dataset comprising approximately 200,000 synthetic spatially varying materials. Our generative SVBRDF diffusion model allows for the synthesis of multiple SVBRDF estimates from a single textual input, offering users the possibility to choose the output that best aligns with their requirements. We illustrate our method's versatility by generating SVBRDF maps from a range of textual descriptions, both specific and broad. Our ReflectanceUNet model can integrate optional physical parameters, such as roughness and specularity, enhancing customization. When the backbone module is fixed, the ReflectanceUNet module refines the material, allowing direct edits to its physical attributes. Comparative evaluations demonstrate that ReflectanceFusion achieves better accuracy than existing text-to-material models, such as Text2Mat, while also providing the benefits of editable and relightable SVBRDF maps.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: