Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Online Matching and Contention Resolution for Edge Arrivals with Vanishing Probabilities (2406.14506v2)

Published 20 Jun 2024 in cs.DS, cs.DM, and math.CO

Abstract: We study the performance of sequential contention resolution and matching algorithms on random graphs with vanishing edge probabilities. When the edges of the graph are processed in an adversarially-chosen order, we derive a new OCRS that is $0.382$-selectable, attaining the "independence benchmark" from the literature under the vanishing edge probabilities assumption. Complementary to this positive result, we show that no OCRS can be more than $0.390$-selectable, significantly improving upon the upper bound of $0.428$ from the literature. We also derive negative results that are specialized to bipartite graphs or subfamilies of OCRS's. Meanwhile, when the edges of the graph are processed in a uniformly random order, we show that the simple greedy contention resolution scheme which accepts all active and feasible edges is $1/2$-selectable. This result is tight due to a known upper bound. Finally, when the algorithm can choose the processing order, we show that a slight tweak to the random order -- give each vertex a random priority and process edges in lexicographic order -- results in a strictly better contention resolution scheme that is $1-\ln(2-1/e)\approx0.510$-selectable. Our positive results also apply to online matching on $1$-uniform random graphs with vanishing (non-identical) edge probabilities, extending and unifying some results from the random graphs literature.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com