Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identifiable Exchangeable Mechanisms for Causal Structure and Representation Learning (2406.14302v3)

Published 20 Jun 2024 in stat.ML, cs.AI, and cs.LG

Abstract: Identifying latent representations or causal structures is important for good generalization and downstream task performance. However, both fields have been developed rather independently. We observe that several methods in both representation and causal structure learning rely on the same data-generating process (DGP), namely, exchangeable but not i.i.d. (independent and identically distributed) data. We provide a unified framework, termed Identifiable Exchangeable Mechanisms (IEM), for representation and structure learning under the lens of exchangeability. IEM provides new insights that let us relax the necessary conditions for causal structure identification in exchangeable non--i.i.d. data. We also demonstrate the existence of a duality condition in identifiable representation learning, leading to new identifiability results. We hope this work will pave the way for further research in causal representation learning.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com